A regulatory domain controls the transport activity of a twin-arginine signal peptide
نویسندگان
چکیده
منابع مشابه
Overlapping transport and chaperone-binding functions within a bacterial twin-arginine signal peptide
The twin-arginine translocation (Tat) pathway is a protein targeting system present in many prokaryotes. The physiological role of the Tat pathway is the transmembrane translocation of fully-folded proteins, which are targeted by N-terminal signal peptides bearing conserved SRRxFLK 'twin-arginine' amino acid motifs. In Escherichia coli the majority of Tat targeted proteins bind redox cofactors ...
متن کاملSignal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase
The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal signal peptides that share a tripartite organization; however, Tat signal peptides harbor a conserved and almost invari...
متن کاملStructural diversity in twin-arginine signal peptide-binding proteins.
The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Escherichia coli, many Tat substrates bind redox-active cofactors in the cytoplasm before transport. Coordination of cofactor insertion with protein export involves...
متن کاملFeatures of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone.
The twin-arginine translocation (Tat) system is a bacterial protein targeting pathway. Tat-targeted proteins display signal peptides containing a distinctive SRRxFLK 'twin-arginine' motif. The Escherichia coli trimethylamine N-oxide reductase (TorA) bears a bifunctional Tat signal peptide, which directs protein export and serves as a binding site for the TorD biosynthetic chaperone. Here, the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FEBS Letters
سال: 2013
ISSN: 0014-5793
DOI: 10.1016/j.febslet.2013.09.005